Sains Malaysiana 54(4)(2025): 993-1003
http://doi.org/10.17576/jsm-2025-5404-03
Steviol Glycoside Production and Growth in Stevia rebaudianaShoot Culture after Methyl Jasmonate Elicitation
(Penghasilan Steviol Glikosida dan Pertumbuhan Kultur Pucuk Stevia rebaudiana selepas Elisitasi Metil Jasmonat)
ANDIRA RAHMAWATI1,2, IRIAWATI2,
RIZKITA RACHMI ESYANTI2,* & ROOHAIDA
OTHMAN3
1Doctoral Programme, School
of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha 10, 40132 Bandung, Indonesia
2School
of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha 10, 40132 Bandung, Indonesia
3Department
of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
Received:
24 May 2024/Accepted: 23 December 2024
Abstract
Steviol glycosides are a group of compounds derived from the Stevia rebaudiana metabolites which are commonly used as sugar
replacements. Methyl jasmonate (MeJA)
elicitation is one strategy to induce high steviol glycoside content. MeJA can enhance the synthesis of secondary metabolites,
however, it can also negatively impact the growth of Stevia. The
objective of this study was to establish the concentration and exposure
duration of MeJA elicitation to obtain the highest level of steviol glycoside production while achieving the best growth for Stevia shoot
cultures. The shoot cultures were elicited using MeJA at concentrations of 10 μM, 50 μM, and 100 μM for 24, 48, and 72 h. The cultures were then
transferred into the medium without MeJA for 7 days, and then growth characteristics
were measured. Analysis of stevioside and rebaudioside A levels was performed using HPLC from samples
harvested directly after treatment and 7 days post-elicitation. MeJA was found
to suppress growth in terms of height, adventitious shoot formation, and leaf
size across all concentrations. However, the number of leaves, fresh weight, number
of axillary buds, and number of nodes showed no significant difference. The optimal
condition for stevioside synthesis was achieved at 50 μM MeJA for 48 h (0.73
mg/g), while the optimal condition for rebaudioside A
synthesis was achieved with 100 μM MeJA 24 h treatment (0.63 mg/g). Analysis of the plant
growth and secondary metabolite production suggested that the treatment using
50 μM MeJA for 48 h was
found to be the best conditions which gave high secondary metabolite production
while plant growth was also high. This finding can serve as a fundamental
approach for enhancing the production of steviol glycosides in the industry.
Keywords: Growth; in
vitro culture; rebaudioside A; Stevia; stevioside
Abstrak
Steviol glikosida adalah sekumpulan sebatian terbitan daripada
metabolit Stevia rebaudiana yang biasa digunakan sebagai pengganti gula.
Elisitasi menggunakan metil jasmonat (MeJA) merupakan satu strategi yang boleh
dilakukan untuk mengaruh kandungan steviol glikosida yang tinggi. MeJA boleh
meningkatkan sintesis metabolit sekunder, namun begitu, ia juga boleh
menjejaskan pertumbuhan Stevia. Objektif kajian ini adalah untuk
menentukan kepekatan dan tempoh pendedahan elisitasi MeJA untuk memperoleh
tahap penghasilan steviol glikosida paling tinggi di samping mencapai
pertumbuhan terbaik bagi kultur pucuk Stevia. Kultur pucuk telah dielisitasi
menggunakan MeJA pada kepekatan 10 μM, 50 μM dan 100 μM selama
24, 48 dan 72 jam. Kultur kemudiannya dipindahkan ke dalam medium tanpa MeJA selama
7 hari, seterusnya ciri pertumbuhan telah diukur. Analisis tahap steviosida dan
rebaudiosida A dilakukan menggunakan HPLC daripada sampel yang diambil sejurus
selepas rawatan MeJA dan 7 hari selepas elisitasi. MeJA didapati merencat
pertumbuhan dari segi ketinggian, pembentukan pucuk adventitius dan saiz daun
pada semua kepekatan. Walau bagaimanapun, bilangan daun, berat segar, bilangan tunas
aksilari dan bilangan nod tidak menunjukkan perbezaan signifikan. Keadaan yang
optimum bagi sintesis steviosida dicapai pada 50 μM MeJA selama 48 jam
(0.73 mg/g), manakala keadaan yang optimum bagi sintesis rebaudiosida A pula
dicapai dengan rawatan 100 μM MeJA selama 24 jam (0.63 mg/g). Analisis
pertumbuhan tumbuhan dan penghasilan metabolit sekunder mencadangkan bahawa rawatan
menggunakan 50 μM MeJA selama 48 jam didapati merupakan keadaan terbaik
yang memberikan penghasilan metabolit sekunder yang tinggi di samping pertumbuhan
tumbuhan yang juga tinggi. Penemuan ini boleh bertindak sebagai pendekatan asas
dalam meningkatkan penghasilan steviol glikosida dalam industri.
Kata
kunci: Kultur in vitro; pertumbuhan; rebaudiosida A; Stevia; steviosida
REFERENCES
Ahn, S.Y., Kim, S.A., Cho, K.S. & Yun, H.K.
2014. Expression of genes related to flavonoid and stilbene synthesis as
affected by signaling chemicals and Botrytis cinerea in grapevines. Biologia Plantarum 58: 758-767.
Ahmad,
J., Khan, I., Blundell, R., Azzopardi, J. & Fawzi, M. 2020. Stevia rebaudiana Bertoni, an
updated review of its health benefit, industrial applications, and safety. Trends
in Food Science and Technology 100: 177-189.
Bayraktar,
M., Naziri, E., Karabey, F., Akgun, I.H., Bedir, E., Rock-Okuyucu,
B. & Gurel, A. 2018. Enhancement of stevioside production by using biotechnological approach in in vitro culture of Stevia rebaudiana. International Journal of Secondary
Metabolite 5(4): 362-374.
Bayraktar,
M., Naziri, E., Akgun, I.H., Karabey, F., Ilhan, E., Akyol, B., Bedir, E. &
Gurel, A. 2016. Elicitor induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell, Tissue, and Organ Culture 127(2): 289-300.
Chen,
J., Wang, J., Wang, R., Xian, B., Ren, C., Liu, Q., Wu, Q. & Pei, J. 2020.
Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in
safflower (Carthamus tinctorius L.) under MeJA treatment. BMC Plant
Biology 20: 353.
Cheng,
Y., Liang, C., Qiu, Z., Zhou, S., Liu, J., Yang, Y., Wang, R., Yin, J., Ma, C.,
Cui, Z., Song, J. & Li, D. 2023. Jasmonic acid
negatively regulates branch growth in pear. Frontiers in Plant Science 14: 1105521.
Cousins, M.M. & Adelberg, J.W. 2008.
Short-term and long-term time course studies of turmeric (Curcuma longa L.) microrhizome development in
vitro. Plant Cell, Tisssue, and Organ Culture 93: 283-293.
Faizal,
A., Esyanti, R.R., Adnain,
N., Rahmani, S., Prihatini, A.W., Azar, Iriawati & Turjaman, M. 2021.
Methyl jasmonate and crude extracts of Fusarium solani elicit agarwood compounds in shoot culture of Aquilaria malaccensis Lamk. Heliyon 7(4): e06725.
Faizal,
A. & Sari, A.V. 2019. Enhancement of Saponin accumulation in adventitious
root culture of Javanese Ginseng (Talinum paniculatum Gaertn.) through methyl jasmonate and salicylic acid elicitation. African Journal of Biotechnology 18(6):
130-135.
Jan,
S.A., Habib, N., Shinwari, Z.K., Ali, M. & Ali, N. 2021. The anti-diabetic
activities of natural sweetener plant Stevia: An updated review. SN
Applied Sciences 3: 517.
Kaminska,
M. 2021. Role and activity of jasmonates in plants
under in vitro conditions. Plant Cell, Tissue, and Organ Culture 146: 425-447.
Kazan, K.
& Manners, J.M. 2012. JAZ repressors and the orchestration of phytohormone
crosstalk. Trends in Plant Science 17: 22-31.
Khalil, S.A., Zamir, R. & Ahmad, N. 2014.
Selection of suitable propagation method for consistene plantlets production in Stevia rebaudiana (Bertoni). Saudi Journal of Biological Science 21: 566-573.
Kim, J.,
Chang, C. & Tucker, M.L. 2015. To grow old: Regulatory role of ethylene and jasmonate acid in senescence. Frontiers in Plant Science 6: 20.
Koc, İ., Onay, A. & Çiftçi, Y.Ö. 2014. In vitro regeneration and conservation of the lentisk (Pistacia lentiscus L.). Turkish Journal of Biology 38: 5.
Kolb,
N., Herrera, J., Ferreyra, D. & Uliana, R. 2001. Analysis of sweet
diterpene glycosides from Stevia rebaudiana: Improved
HPLC method. Journal of Agricultural and Food Chemistry 49(10): 4538-4541.
Li, C.,
Wang, P., Menzies, N.W., Lombi, E. & Kopittke,
P.M. 2016. Effects of methyl jasmonate on plant
growth and leaf properties. Journal of Plant Nutrition and Soil Sciences 181(3): 409-418.
Liu,
J.P., Hu, J., Liu, Y.H., Yang, C.P., Zhuang, Y.F., Guo, X.L., Li, Y.J. &
Zhang, L. 2018. Transcriptome analysis of Hevea brasiliensis in response to exogenous methyl jasmonate provides novel insights into regulation of jasmonate-elicited rubber biosynthesis. Physiology and Molecular
Biology of Plants 24: 349-358.
Lucho, S.R.,
Amaral, M.N., Milech, C., Ferrer, M.A. Calderon, A.A.,
Bianchi, V.J. & Braga, E.J.B. 2018. Elicitor-induced transcriptional
changes of genes of the steviol glycoside
biosynthesis pathway in Stevia rebaudiana Bertoni. Journal of Plant Growth Regulation 37:
971-985.
Mahmood,
M., Bidabadi, S.S., Ghobadi, C. & Gray, D.J.
2012. Effect of methyl jasmonate treatments on
alleviation of polyethylene glycol -mediated water stress in banana (Musa
acuminata cv. ‘Berangan’, AAA) shoot tip
cultures. Plant Growth Regulation 68: 161-169.
Mariotti,
L., Fambrini, M., Pugliesi, C. & Scartazza, A.
2022. The gibberellin-deficient dwarf2 mutant of sunflower shows a high
constitutive level of jasmonic and salicylic acids
and an elevated energy dissipation capacity in well-watered and drought
conditions. Environmental and Experimental Botany 194: 104697.
Moharramnejad, S.,
Azam, A.T., Panahandeh, J., Dehghanian,
Z. & Ashraf, M. 2019. Effect of methyl jasmonate and salicylic acid on in vitro growth, stevioside production, and oxidative defense system in Stevia rebaudiana. Sugar Technology 21: 1031-1038.
Momtazi-Borojeni, A.A., Esmaeili, S.A., Abdollahi, E. & Sahebkar,
A. 2017. A review on the pharmacology and toxicology of steviol glycosides extracted from Stevia rebaudiana. Current
Pharmaceutical Design 23(11): 1616-1622.
Murashige,
T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with
tobacco tissue cultures. Physiologia Plantarum 15: 473-497.
Noir,
S., Bomer, M., Takahashi, N., Ishida, T., Tsui, T.L., Balbi, V., Shanahan, H.,
Sugimoto, K. & Devoto, A. 2013. Jasmonate controls leaf growth by repressing cell
proliferation and the onset of endoreduplication while maintaining a potential
stand-by mode. Physiologia Plantarum 161: 1930-1951.
Pandey, M. & Chikara, K. 2014. In vitro regeneration and effect of abiotic stress on physiology and biochemical content
of Stevia rebaudiana Bertoni. Journal of Plant Science & Research 1(3): 113.
Pauwels, L., Morreel,
K., Witte, E.D., Lammertyn, F., Von Montagu, M.,
Boerjan, W., Inzé, D. & Goossens, A. 2008.
Mapping methyl jasmonate-mediated transcriptional
reprogramming of metabolism and cell cycle progression in cultured Arabidopsis
cells. Proceedings of the National Academy of Sciences of the United States
of America 105(4): 1380-1385.
Rahmawati,
A., Emmanuel, V., Iriawati, Lambangsari,
K., Esyanti, R.R., Othman, R., Simamora,
A.N.D. & Suwito, B. 2023. Evaluation of Stevia rebaudiana leaf axillary shoot formation,
cultured in MS medium supplemented with IAA-BAP and MS supplemented with
kinetin. 3 Bio Journal of Biological Science, Technology, and Management 5(1): 128-132.
Rameshsing, C.N.,
Hegde, S.N. & Vasundhara, M. 2015. Enhancement of steviol glycosides in stevia (Stevia rebaudiana Bertoni) through induction of polyploidy. Current Trends
in Biotechnology and Pharmacy 9: 141-146.
Rohmawati, T. & Dewi, K. 2019. Effect of methyl jasmonate on vegetative growth and formation of potato tuber
(Solanum tuberosum L. var. Granola). Biogenesis 7(1): 24-29.
Ruiz-Ruiz,
J.C., Moguel-Ordoñez, Y.B., Matus-Basto, A.J. & Segura-Campos, M.R. 2015.
Antidiabetic and antioxidant activity of Stevia rebaudiana extracts (var. Morita) and their incorporation into a potential functional
bread. Journal of Food Science and Technology 52(12): 7894-7903.
Sharma, M., Ahuja, A.,
Gupta, R. & Mallubhotla, S. 2015. Enhanced
bacoside production in shoot cultures of Bacopa monnieri under the influence of abiotic elicitors. Natural Product Research 29(8):
745-749.
Singh,
A. & Dwivedi, P. 2018. Methyl jasmonate and salicylic
acid as potent elicitors for secondary metabolite production in medicinal
plants: A review. Journal of Pharmacognosy and Phytochemistry 7(1):
750-757.
Sohn, S.I.,
Pandian, S., Rakkammal, K., Largia,
M.J.V., Thamilarasan, S.K., Balaji, S., Zoclanclounon, Y.A.B., Shilpha, J.
& Ramesh, M. 2022. Jasmonates in plant growth and
development and elicitation of secondary metabolites: An updated overview. Frontiers
in Plant Science 13: 942789.
Song,
S., Qi, T., Wasternack, C. & Xie, D. 2014. Jasmonate signaling and crosstalk
with gibberellin and ethylene. Current Opinion in Plant Biology 21: 112-119.
Świątek, A.,
Azmi, A., Stals, H., Inzé, D. & Van Onckelen, H. 2004. Jasmonic acid
prevents the accumulation of cyclin B1;1 and CDK-B in synchronized tobacco BY-2
cells. FEBS Letter 572: 118-122.
Peteliuk, V., Rybchuk, L., Bayliak, M., Storey,
K.B. & Lushchak, O. 2021. Natural sweetener Stevia rebaudiana: Functionalities, health benefits, and
potential risks. EXCLI Journal 20: 1412-1430.
Yoneda,
Y., Nakashima, H., Miyasaka, J., Ohdoi, K. &
Shimizu, H. 2017. Impact of blue, red, and far-red light treatments on gene
expression and steviol glycoside accumulation in Stevia rebaudiana. Phytochemistry 137: 57-65.
Zare-Hassani,
E., Motafakkerazad, R., Razeghi,
J. & Kosari-Nasab, M. 2019. The effects of
methyl jasmonate and salicylic acid on the production
of secondary metabolites in organ culture of Ziziphora persica. Plant Cell Tissue Organ Culture 138:
437-444.
*Corresponding
author; email: rizkita@itb.ac.id
|